
LA-UR-17-23494
Approved for public release; distribution is unlimited.

Title: Ising Processing Units: Potential and Challenges for Discrete
Optimization

Author(s): Coffrin, Carleton James
Nagarajan, Harsha
Bent, Russell Whitford

Intended for: Web

Issued: 2017-07-05 (rev.1)

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for
the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

Ising Processing Units:
Potential and Challenges for

Discrete Optimization

Carleton Coffrin, Harsha Nagarajan, and Russell Bent

Los Alamos National Laboratory, Los Alamos, New Mexico, USA

Abstract. The recent emergence of novel computational devices, such
as adiabatic quantum computers, CMOS annealers, and optical paramet-
ric oscillators, presents new opportunities for hybrid-optimization algo-
rithms that leverage these kinds of specialized hardware. In this work, we
propose the idea of an Ising processing unit as a computational abstrac-
tion for these emerging tools. Challenges involved in using and bench-
marking these devices are presented, and open-source software tools are
proposed to address some of these challenges. The proposed benchmark-
ing tools and methodology are demonstrated by conducting a baseline
study of established solution methods to a D-Wave 2X adiabatic quan-
tum computer, one example of a commercially available Ising processing
unit.

1 Introduction

As the challenge of scaling traditional transistor-based Central Processing Unit
(CPU) technology continues to increase, experimental physicists and high-tech
companies have begun to explore radically different computational technologies,
such as adiabatic quantum computers (AQCs) [29], gate-based quantum comput-
ers [28,43], CMOS annealers [52,53], neuromorphic computers [42], and optical
parametric oscillators [40,27,30]. The goal of all of these technologies is to lever-
age the dynamical evolution of a physical system to perform a computation that
is challenging to emulate using traditional CPU technology (e.g., the simulation
of quantum physics) [19]. Despite their entirely disparate physical implementa-
tions, AQCs, CMOS annealers, and optical parametric oscillators are unified by
a common mathematical abstraction known as the Ising model, which has been
widely adopted by the physics community for the study of naturally occurring
discrete optimization [12]. Furthermore, this kind of “Ising machine” [40,27] is
already commercially available with more than 2000 decision variables in the
form of AQCs developed by D-Wave Systems [16].

The emergence of physical devices that can quickly solve Ising models is
particularly relevant to the optimization and operations research communities,
because the core purpose of these devices is to perform discrete optimization.
As this technology matures, it may be possible for this specialized hardware to

2 Carleton Coffrin, Harsha Nagarajan, and Russell Bent

rapidly solve classical combinatorial problems, such as Max-Cut [24] or Max-
Clique [37]. Preliminary studies have even suggested that some classes of Con-
straint Satisfaction Problems may be effectively encoded in such devices because
of their combinatorial structure [6,5,47,50]. Furthermore, an Ising model copro-
cessor could have significant impacts on solution methods for a variety of fun-
damental combinatorial problem classes, such as MAX-SAT [21,44] and integer
programming [46]. At this time, however, it remains unclear how established
optimization algorithms should leverage this emerging technology.

Similar to an arithmetic logic unit or a graphics processing unit (GPU), we
propose the idea of an Ising processing unit (IPU) as the computational ab-
straction for physical devices that perform optimization of Ising models. This
work first provides a brief introduction to the IPU abstraction and develops the
mathematical foundations and real-world considerations of this novel hardware.
Second, it conducts a baseline benchmarking study of an IPU to demonstrate
the current capabilities of such a device. Hence, this work makes both literature
survey and technical contributions. The survey contributions include (1) pre-
senting foundational Ising model results from other disciplines in terminology
that is familiar to the optimization community (Section 2), and (2) highlight-
ing key features of IPUs to provide context for future algorithmic developments
utilizing these analog devices (Section 3). The technical contributions include
(1) developing a benchmarking methodology for IPUs, which is enabled by pro-
posed open-source software tools (Section 4); and (2) demonstrating the pro-
posed benchmarking tools by conducting a baseline evaluation of a D-Wave 2X
IPU to support future work in the area (Section 5). To the best of our knowledge,
this is the first benchmarking study to use an integer programming solver for
identifying challenging IPU test cases. Because of the maturity and commercial
availability of the D-Wave IPU, this work often refers to that architecture as an
illustrative example. However, based on our understanding of other IPU tech-
nologies, the methods and tools proposed herein are applicable to all emerging
IPU hardware realizations.

2 A Brief Introduction to Ising Models

This section introduces the notations of the paper and provides a brief intro-
duction to Ising models because they are the core mathematical abstraction of
IPUs. The Ising model refers to the class of graphical models where the nodes,
N , represent spin variables (i.e., σi ∈ {−1, 1} ∀i ∈ N) and the edges, E , repre-
sent interactions of spin variables (i.e., σiσj ∀i, j ∈ E). A local field hi ∀i ∈ N
can be specified for each node, and an interaction strength Jij ∀i, j ∈ E can be
specified for each edge. Given these data, the energy of the Ising model is defined
as

E(σ) =
∑
i,j∈E

Jijσiσj +
∑
i∈N

hiσi (1)

Applications of the Ising model typically consider one of two tasks. Some appli-
cations focus on finding the lowest possible energy of the Ising model, namely

Ising Processing Units: Potential and Challenges for Discrete Optimization 3

finding the globally optimal solution of the following binary quadratic optimiza-
tion problem:

min : E(σ) (2)

s.t.: σi ∈ {−1, 1} ∀i ∈ N

Other applications are interested in sampling from the Boltzmann distribution
of the Ising model’s states:

Pr(σ) ∝ e
−E(σ)

τ (3)

where τ is a parameter representing the effective temperature of the Boltzmann
distribution [54]. It is valuable to observe that in the Boltzmann distribution, the
lowest energy states have the highest probability. Hence, the task of sampling
from a Boltzmann distribution is similar to the task of finding the lowest energy
of the Ising model. Indeed, as τ approaches 0, the sampling task smoothly trans-
forms into the aforementioned optimization task. This paper focuses exclusively
on the mathematical program presented in (2), the optimization task.

Frustration The notion of frustration is common in the study of Ising models
and refers to any instance of (2) where the optimal solution, σ∗, satisfies the
property

E(σ∗) >
∑
i,j∈E

−|Jij | −
∑
i∈N
|hi| (4)

A canonical example is the following three node problem:

h1 = 0,h2 = 0,h3 = 0 (5a)

J12 = −1,J23 = −1,J13 = 1 (5b)

Observe that, in this case, there are a number of optimal solutions such that
E(σ∗) = −2 but none such that E(σ) =

∑
i,j∈E −|Jij | = −3.

Gauge Transformations A valuable property of the Ising model is the gauge
transformation, which characterizes an equivalence class of Ising models. For
illustration, consider the optimal solution of Ising model S, σs∗. One can con-
struct a new Ising model T where the optimal solution is the same, except that
σt∗
i = −σs∗

i for a particular node i ∈ N is as follows:

J t
ij = −Js

ij ∀i, j ∈ E(i) (6a)

ht
i = −hs

i (6b)

where E(i) indicates the neighboring edges of node i. This S-to-T manipulation
is referred to as a gauge transformation. Given a complete source state σs and
a complete target state σt, this transformation is generalized to all of σ by

J t
ij = Js

ijσ
s
iσ

s
jσ

t
iσ

t
j ∀i, j ∈ E (7a)

ht
i = hs

iσ
s
iσ

t
i ∀i ∈ N (7b)

4 Carleton Coffrin, Harsha Nagarajan, and Russell Bent

It is valuable to observe that by using this gauge transformation property, one
can consider the class of Ising models where the optimal solution is σ∗i = −1 ∀i ∈
N or any arbitrary vector of −1, 1 values without loss of generality.

Bijection of Ising and Boolean Optimization It is also useful to observe that
there is a bijection between Ising optimization (i.e., σ ∈ {−1, 1}) and Boolean
optimization (i.e., x ∈ {0, 1}). The transformation of σ ⇒ x is given by

xi =
σi + 1

2
∀i ∈ N (8a)

xixj =
σiσj + σi + σj + 1

4
∀i, j ∈ E (8b)

and the inverse x⇒ σ is given by

σi = 2xi − 1 ∀i ∈ N (9a)

σiσj = 4xixj − 2xi − 2xj + 1 ∀i, j ∈ E (9b)

Consequently, any results from solving Ising models are also immediately appli-
cable to the following class of Boolean optimization problems:

min :
∑
i,j∈E

cijxixj +
∑
i∈N

cixi (10)

s.t.: xi ∈ {0, 1} ∀i ∈ N

The Ising model provides a clean mathematical abstraction for understanding
the computation of IPUs. However, in practice, a number of hardware imple-
mentation factors present additional challenges for computing with IPUs.

3 Features of Ising Processing Units

The core inspiration for developing IPUs is to take advantage of the natural
evolution of a discrete physical system to find high-quality solutions to an Ising
model (2) [29,40,53]. Consequently, to the best of our knowledge, all IPUs de-
veloped to date are analog machines, which present a number of challenges that
the optimization community is not accustomed to considering.

Effective Temperature The ultimate goal of current IPUs is to solve the optimiza-
tion problem (2) and determine the globally optimal solution to the input Ising
model. In practice, however, a variety of analog factors preclude IPUs from reli-
ably finding globally optimal solutions. As a first-order approximation, current
IPUs behave like a Boltzmann sampler (3) with some hardware-specific effective
temperature, τ [7]. It has also been observed that the effective temperature of
an IPU can vary around a nominal value based on the Ising model that is being
executed [4]. This suggests that the IPU’s performance can change based on the
structure of the problem input.

Ising Processing Units: Potential and Challenges for Discrete Optimization 5

σ4 σ5 σ6 σ7

σ0 σ1 σ2 σ3

σ12 σ13 σ14 σ15

σ8 σ9 σ10 σ11

σ20 σ21 σ22 σ23

σ16 σ17 σ18 σ19

σ28 σ29 σ30 σ31

σ24 σ25 σ26 σ27

σ4 σ5 σ6 σ7

σ0 σ1 σ2 σ3

σ12 σ13 σ14 σ15

σ8 σ9 σ10 σ11

σ20 σ21 σ22 σ23

σ16 σ17 σ18 σ19

σ28 σ29 σ30 σ31

σ24 σ25 σ26 σ27

σ4 σ5 σ6 σ7

σ0 σ1 σ2 σ3

σ12 σ13 σ14 σ15

σ8 σ9 σ10 σ11

σ20 σ21 σ22 σ23

σ16 σ17 σ18 σ19

σ28 σ29 σ30 σ31

σ24 σ25 σ26 σ27

Fig. 1. A 2-by-2 Chimera Graph Illustrating the Variable Product Limitations of a
D-Wave 2X IPU.

Environmental Noise One of the primary contributors to the sampling nature
of IPUs is environmental factors. All analog machines are subject to faults due
to environmental noise; for example, even classical computers can be affected by
cosmic rays. However, given the relative novelty of IPUs, the effects of environ-
mental noise are noticeable in current hardware. The effects of environmental
noise contribute to the perceived effective temperature τ of the IPU.

Problem Coefficients In traditional optimization applications, the problem coef-
ficients are often rescaled to best suit floating-point arithmetic. Similarly, IPUs
have digital-to-analog converters that can encode a limited number of values;
typically these values are represented as numbers in the range of -1 to 1. Some
IPUs allow for hundreds of steps within this range, [29,53] whereas others sup-
port only the discrete set of {-1, 0, 1} [40]. In either case, the Ising model must
be rescaled into the IPU’s operating range. The values of the coefficients used
in the IPU are critically important because these values are often perturbed by
environmental noise and hardware biases.

Coefficient Biases Once an Ising model is input into an IPU, its coefficients
are subject to at least two sources of bias. The first source of bias is a model
programming error that occurs independently each time the IPU is configured for
a computation. This bias is often mitigated by programming the IPU multiple
times with an identical input and combining the results from all executions.
The second source of bias is a persistent coefficient error, which is an artifact of
the IPU manufacturing and calibration process. Because this bias is consistent
across multiple IPU executions, this source bias is often mitigated by performing
multiple gauge transformations on the input and combining the results from all
executions.

Topological Limitations Another significant feature of IPUs is a restricted topol-
ogy for variable products. In classical optimization (e.g., (2)), it is assumed that
every variable can interact with every other variable, that is, an Ising model

6 Carleton Coffrin, Harsha Nagarajan, and Russell Bent

where an edge connects every pair of variables. However, because of the hard-
ware implementation of an IPU, it may not be possible for some variables to
interact. For example, the current D-Wave IPUs are restricted to the chimera
topology, which is a two-dimensional lattice of unit cells, each of which consist
of a 4-by-4 bipartite graph (e.g., see Figure 1). In addition to these restrictions,
fabrication errors can also lead to random failures of nodes and edges in the IPU
hardware. Indeed, as a result of these minor imperfections, every D-Wave IPU
developed to date has a unique topology [9,18,32]. Research and development
of algorithms for embedding various kinds of Ising models into a specific IPU
topology is still an active area of research [6,11,13,34].

3.1 Challenges of Benchmarking Ising Processing Units

These novel IPU features present unique challenges for benchmarking these de-
vices. These challenges fall into roughly two categories: finding interesting Ising
models for testing and comparing with classical methods.

Standardized Benchmark Libraries Research and development in optimization
algorithms has benefited greatly from standardized benchmark libraries [35,20,26].
However, direct application of these libraries to IPUs is out of scope for the near
term for the following reasons: (1) the Ising model is a binary quadratic program,
which is sufficiently restrictive to preclude the use of many standard problem
libraries; (2) even in cases where the problems of interest can be mapped directly
to the Ising model (e.g., Max-Cut, Max-Clique), the task of embedding the given
problems onto the IPU’s hardware graph can be prohibitive; and (3) even if an
embedding can be found, it is not obvious that the problem’s coefficients will be
amenable to the IPU’s operating range [14].

Another option is to build a new standardized benchmark library specifically
for the evaluation of IPUs. However, given that every IPU is unique and within
an IPU each variable also has individual properties (e.g., persistent bias), it is
not immediately clear that a new static benchmark library could be applied to
multiple IPUs.

Comparison with Classical Algorithms Because of the radically different hard-
ware of CPUs vs IPUs and the sampling nature of the IPUs, how to conduct a
fair comparison of these two technologies is not immediately clear [38,39,33]. For
example, is the comparison more fair or less fair if classical algorithms utilize
multiple cores or GPUs? Indeed, comparisons of D-Wave’s IPU with classical
algorithms have resulted in vigorous discussion about what algorithms and met-
rics should be used to make such comparisons [1,32,2]. It is widely accepted that
IPUs do not provide optimality guarantees and should be compared to classical
heuristic methods rather than methods providing optimality proofs. However,
it is less clear whether heuristics should be specialized to solve problems for a
specific IPU architecture (e.g., [49,48]) or whether classical methods should be
designed for the most general form of the Ising model (2). This debate will most
likely continue for several years. In this work, our goal is not to answer these

Ising Processing Units: Potential and Challenges for Discrete Optimization 7

challenging questions but rather to develop benchmarking tools that will assist
researchers in exploring these questions and replicating previous results as the
subject of IPUs evolves.

4 Tools for Benchmarking Ising Processing Units

To help address a number of the previously discussed challenges, in this work
we propose three open-source tools for assisting in benchmarking IPUs:

– bqpjson: a language-independent json-based test case exchange format de-
signed with IPUs in mind1

– dwig: a collection of algorithms for IPU test case generation2

– bqpsolvers: a collection of tools for encoding bqpjson data into various
optimization solvers3

We now review the design motivations and core features of each of these tools.

4.1 Data Management

The primary design goals of bqpjson are to (1) encode all of the information
required to replicate the exact execution that was performed on a specific IPU
hardware; (2) allow the IPU test case to be transformed back to the original prob-
lem domain, if one exists; and (3) not be prescriptive about the mathematical
representation of the test case (i.e., (2) or (10)). To that end, bqpjson encodes
the following class of binary quadratic programs, which is a generalization of (2)
and (10):

min : s

∑
i,j∈E

cijbibj +
∑
i∈N

cibi + o

 (11)

s.t.: bi ∈ {0, 1} ∀i ∈ N or bi ∈ {−1, 1} ∀i ∈ N

The key features of this model are (1) the decision variables can be represented as
either spin (i.e., {−1, 1}) or Boolean (i.e., {0, 1}) values; (2) the objective offset
term, o, is required in order to ensure an idempotent transformation between
the spin and Boolean variable domains; (3) the explicit scaling term, s, allows
for the problem coefficients (i.e., c) to be specified within an IPU’s operating
range while preserving the units of the problem’s original objective function;
and (4) the collection of decision variables N allows the variable identifiers to
have arbitrary values, such as the names used by specific IPU hardware (unlike
traditional test case formats, where the variables are numbered from 1 to n).

1 The source code is available at https://github.com/lanl-ansi/bqpjson
2 The source code is available at https://github.com/lanl-ansi/dwig
3 The source code is available at https://github.com/lanl-ansi/bqpsolvers

https://github.com/lanl-ansi/bqpjson
https://github.com/lanl-ansi/dwig
https://github.com/lanl-ansi/bqpsolvers

8 Carleton Coffrin, Harsha Nagarajan, and Russell Bent

In addition to these problem specification features, bqpjson also has exten-
sive support for documenting test cases. A description section provides human-
readable information about the test case, whereas a metadata section is used
to encode useful machine-readable information. bqpjson also supports encod-
ing solutions so that test cases can include details about target or best-known
solutions to specific cases.

Implementation and Tools The current implementation of bqpjson is provided
as a free and open-source Python package that can be installed from the source
code repository or from the Python Package Index (PyPI). This package includes
(1) detailed documentation of the bqpjson file format; (2) tools for validation of
JSON data to ensure they conform to the bqpjson specification; (3) bqpjson-
to-bqpjson idempotent transformations between the spin and Boolean variable
domains; (4) translation of bqpjson data into other established problem for-
mats, such as QUBO [10] and MiniZinc [45]; and (5) a collection of command
line tools for bash script processing of bqpjson data.

4.2 Case Generation

Because of the challenges associated with mapping established optimization test
cases to the IPU hardware, the IPU benchmarking community has adopted the
practice of generating tests on a case-by-case basis for specific IPUs [32,25,33,18].
This practice amounts to finding interesting values for h and J in (1). In some
cases the procedures for generating these values are elaborate [18,31] and are
designed to leverage theoretical results about Ising models [25]. To ensure the
experimental reproducibility in the context of IPU-specific case generation, in
this paper we developed the D-Wave Instance Generator (dwig). dwig repre-
sents a collection of algorithms that generate well-studied random Ising models.
Our hope is that as long as the same test case generation algorithm is used, the
average values of previous experimental results will be replicable across multiple
IPUs. The dwig script currently implements five problem classes proposed in
the literature [32,31,33,18], each of which we will briefly introduce. For a detailed
description, please refer to the source publication of the problem class.

Random (RAN-k and RANF-k) To the best of our knowledge, the RAN-k prob-
lem was first proposed in [32] and consists simply of assigning each value of h
to 0 and each value of J uniformly at random from the set

{−k,−k + 1, . . . ,−2,−1, 1, 2, . . . ,k − 1,k} (12)

The RANF-k problem is a simple variant of RAN-k where the values of h are
also selected uniformly at random from (12). As we will later see, RAN-1 and
RANF-1, where h,J ∈ {−1, 1}, are an interesting subclass of this problem.

Frustrated Loops (FL-k and FCL-k) The frustrated loop problem was originally
proposed in [25] and then later refined to the FL-k problem in [31]. It consists

Ising Processing Units: Potential and Challenges for Discrete Optimization 9

of generating a collection of random cycles in the IPU graph. In each cycle,
all of the edges are set to −1 except one random edge, which is set to 1 to
produce frustration. A scaling factor α is used to control how many random cycles
should be generated, and the parameter k determines how many cycles each edge
can participate in. A key property of the FL-k generation procedure is that a
globally optimal solution is maintained at σi = −1 ∀i ∈ N and σi = 1 ∀i ∈ N
[31]. However, by default, dwig uses a gauge transformation to obfuscate this
solution pair to a random assignment of σ.

A variant of the frustrated loop problem is the frustrated cluster loop prob-
lem, FCL-k [33]. The FCL-k problem is inspired by the chimera network topology
(i.e., Figure 1). The core idea is that tightly coupled variables (e.g., σ1..σ7 in
Figure 1) should form a cluster where all of the variables take the same value.
This is achieved by setting all of the values of J within the cluster to −1. For
the remaining edges between clusters, the previously described frustrated cy-
cles generation scheme is used. It is important to note that a polynomial time
algorithm is known for solving the FCL-k problem class on chimera graphs [39].

It is worthwhile to mention that the FL-k and FCL-k case generators are
effectively solving a cycle packing problem on the IPU graph. Hence, the ran-
domized algorithm implemented in dwig is not guaranteed to find a solution if
one exists, and in practice it fails for the highly constrained settings of α and k.

Weak-Strong Cluster Networks (WSCNs) The WSCN problem was proposed in
[18] and is highly specialized to the chimera network topology. The basic building
block of a WSCN is a pair of spin clusters in the chimera graph (e.g., σ1..σ7 and
σ8..σ15 in Figure 1). In the strong cluster the values of h are set to the strong
force parameter sf and in the weak cluster the values of h are set to the weak
force parameter wf. All of the values of J within and between this cluster pair
are set to −1. Once a number of weak-strong cluster pairs have been placed, the
strong clusters are connected to each other using random values of J ∈ {−1, 1}.
The values of sf = −1.0 and wf = 0.44 are recommended by [18]. The motivation
for the WSCN design is that the clusters create many deep local minima that
are difficult for local search methods to escape.

Implementation The current implementation of dwig is provided as a Python
script. The implementation takes an IPU hardware specification as input and
produces bqpjson test cases for each of the problem classes described above.

4.3 Baseline Solution Methods

Because of the novelty of bqpjson, solvers do not currently support loading
bqpjson cases directly. Hence, to make bqpjson usable we provide the bqp-
solvers code base, which includes a collection of simple tools for running
bqpjson data on a variety of established Ising model optimization algorithms.
bqpsolvers is designed as a collaborative space where state-of-the-art bqpj-
son solvers can be community-curated and leveraged for future IPU evaluations.

10 Carleton Coffrin, Harsha Nagarajan, and Russell Bent

At this time, bqpsolvers includes connections to the following solution
methods: (1) mixed integer programming (MIP) [17,8], (2) large neighborhood
search (LNS) via the Hamze-Freitas-Selby (HFS) algorithm [23,49], and (3) adi-
abatic quantum computation (AQC) via the D-Wave IPU [29]. Each of these is
briefly introduced.

Mixed Integer Programming Modern MIP solvers are highly optimized for Boolean
variables, so we choose to develop a MIP model based on the Boolean optimiza-
tion variant of the Ising model, (10), as follows:

min : s

∑
i,j∈E

cijxij +
∑
i∈N

cixi + o

 (13a)

s.t.:

xij ≥ xi + xj − 1 ∀i, j ∈ E (13b)

xij ≤ xi ∀i, j ∈ E (13c)

xij ≤ xj ∀i, j ∈ E (13d)

xij ∈ {0, 1} ∀i, j ∈ E
xi ∈ {0, 1} ∀i ∈ N

In this formulation we convert the binary quadratic program defined in (10) to
a binary linear program by lifting the variable products xixj into a new variable
xij and adding linear constraints to capture the xij = xi∧xj ∀i, j ∈ E constraints
[8]. This formulation was implemented using Gurobi [22].

Large Neighborhood Search The state-of-the-art heuristic for solving Ising mod-
els on the chimera graphs is an LNS-based method called HFS [23,49]. The core
idea of this algorithm is to extract low treewidth subgraphs of the given Ising
model and then use dynamic programming to compute the optimal configuration
of these subgraphs. This extract and optimize process is repeated until a speci-
fied time limit is reached. This solver utilizes a highly optimized open-source C
implementation of HFS [48] and leverages the bqpjson tools to convert bqpj-
son data into the HFS’s proprietary data format.

Adiabatic Quantum Computation The AQC solver runs the provided bqpj-
son model natively on a D-Wave IPU. This solver assumes that the bqpj-
son model was generated on the specified IPU and that the variable identifiers
used in the bqpjson model will map directly to the IPU hardware. No attempt
is made to transform a general bqpjson model into the specified IPU hardware.
Recalling that the IPU behaves like a Boltzmann sampler rather than a classical
optimization solver, this code takes a number of samples from the IPU (typically
10,000) and reports the best solution found among all of the samples, making
the IPU’s output consistent with the other optimization tools considered here.

Implementation All of the bqpsolvers are provided as independent Python
scripts with consistent input and output interfaces.

Ising Processing Units: Potential and Challenges for Discrete Optimization 11

5 A Study of Established Methods

In this section we conduct an in-depth computational study of the IPU instance
generation procedures and possible solution methods. The first goal of this study
is to understand what classes of problems are most useful for the study of IPUs.
The second goal is to provide a baseline of comparison for future works in this
area. This computational study is divided into two phases. First, we focus on a
broad parameter sweep of all possible instance generation procedures and use a
MIP solver to determine which of the problem classes are most challenging. Sec-
ond, after the most challenging problem classes have been identified, a detailed
study is conducted to compare and contrast the MIP, LNS, and AQC solution
methods.

Throughout this section, the following notations are used to describe the
runtime analysis of the algorithms: UB denotes the objective value of the best
feasible solution produced by the algorithm within the time limit, LB denotes the
value of the best lower bound produced by the algorithm within the time limit,
T denotes the algorithm runtime in seconds, TO denotes that the algorithm hit
a time limit of 600 seconds, µ(·) denotes the mean of a collection of values, sd(·)
denotes the standard deviation of a collection of values, and max(·) denotes the
maximum of a collection of values.

Computation Environment The IPU computation is conducted on a D-Wave 2X
AQC [15]. This computer is a 12-by-12 chimera topology with random omissions;
in total, the IPU has 1095 qubits and 3061 couplers and an effective temperature
of τ ∈ (0.091, 0.053) depending on the problem being solved [51,36]. Unless
otherwise noted, the AQC is configured to produce 10,000 samples using a 5-
microsecond annealing time per sample and a random gauge transformation
every 100 samples. The reported runtime of the AQC reflects the amount of time
used on the IPU hardware; it does not include the overhead of communication
or scheduling of the computation.

The classical computing algorithms are run on HPE ProLiant XL170r servers
with dual Intel 2.10GHz CPUs and 128GB memory. Gurobi 7.0.2 [22] is used as
the MIP solver and is configured to use one thread. The highly specialized and
optimized HFS algorithm [48] is used as an LNS-based heuristic and also uses
one thread.

5.1 Identifying Challenging Cases

Broad Parameter Sweep In this first experiment, we conduct a parameter sweep
of all the inputs to the problem generation algorithms described in Section 4.2.
Table 1 provides a summary of the input parameters for each problem class.
The values of each parameter are encoded with the following triple: (start..stop :
step size). When two parameters are required for a given problem class, the cross
product of all parameters is used. For each problem class and each combination
of parameter settings, 250 random problems are generated in order to produce a
reasonable estimate of the average difficulty of that configuration. Each problem

12 Carleton Coffrin, Harsha Nagarajan, and Russell Bent

Problem First Param. Second Param.

RAN-k k ∈ (1..5 : 1) NA

RANF-k k ∈ (1..5 : 1) NA

FL-k k ∈ (1..5 : 1) α ∈ (0..1 : 0.1)

FCL-k k ∈ (1..5 : 1) α ∈ (0..1 : 0.1)

WSCN wf ∈ (−1..1 : 0.2) sf ∈ (−1..1 : 0.2)

Table 1. Parameter Settings of Various Problems.

Problem # Cases µ(|N |) µ(|E|) µ(T) sd(T) max(T)

RAN 1250 1095 3061 TO — TO

RANF 1250 1095 3061 TO — TO

FL 6944 1008 2126 1.82 1.06 16.80

FCL 8347 888 2282 4.19 2.81 41.40

WSCN 30250 949 2313 0.25 0.87 17.90

Table 2. MIP Runtime on Various IPU Benchmark Problems (seconds).

is generated using all of the decision variables available on the IPU. The results
of this parameter sweep are summarized in Table 2. It is important to note
that the FL and FCL generation methods are randomized algorithms and are
not guaranteed to succeed. This explains why the number of cases for these
problems is not a multiple of 250.

The results presented in Table 2 indicate that, at this problem size, all vari-
ants of the FL, FCL, and WSCN problems are easy for modern MIP solvers. This
suggests that these problems are not ideal candidates for benchmarking IPUs.
In contrast, the RAN and RANF cases consistently hit the runtime limit of the
MIP solver, suggesting that these problems are more challenging optimization
tasks. This result is consistent with a similar observation in the SAT community,
where random SAT problems are known to be especially challenging [41,3]. To
get a better understanding of these RAN problem classes, we next perform a
detailed study of these problems for various values of the parameter k.

The RAN and RANF Problems In this second experiment, we focus on the
RAN-k and RANF-k problems and conduct a detailed parameter sweep of k ∈
(1..10 : 1). To accurately measure the runtime difficulty of the problem, we also
reduce the size of the problem from 1095 variables to 194 variables so that the
MIP solver can reliably terminate within a 600-second time limit. The results of
this parameter sweep are summarized in Table 3.

The results presented in Table 3 indicate that (1) as the value of k increases,
both the RAN and RANF problems become easier; and (2) the RANF problem is
easier than the RAN problem. The latter is not surprising because the additional
linear coefficients in the RANF problem break many of the symmetries that exist
in the RAN problem. These results suggest that it is sufficient to focus on the
RAN-1 and RANF-1 cases for a more detailed study of IPU performance. This
is a serendipitous outcome for IPU benchmarking because restricting the prob-
lem coefficients to {−1, 0, 1} reduces artifacts caused by noise and the numeral
precision of the analog hardware.

Ising Processing Units: Potential and Challenges for Discrete Optimization 13

k # Cases µ(|N |) µ(|E|) µ(T) sd(T) max(T) µ(T) sd(T) max(T)

Problems of Increasing k RAN-k RANF-k

1 250 194 528 340.0 195.0 TO 14.10 15.20 82.70

2 250 194 528 89.3 64.3 481 2.97 3.41 22.70

3 250 194 528 64.8 28.3 207 1.67 1.48 10.70

4 250 194 528 58.0 29.5 250 1.25 0.83 6.10

5 250 194 528 49.0 23.0 131 1.12 0.77 6.98

6 250 194 528 49.0 22.4 119 1.05 0.59 4.47

7 250 194 528 45.0 22.8 128 1.04 0.75 7.60

8 250 194 528 44.8 23.7 121 1.01 0.62 5.43

9 250 194 528 42.3 22.3 110 0.98 0.60 5.08

10 250 194 528 39.8 22.1 107 0.91 0.43 3.09

Table 3. MIP Runtime on RAN-k and RANF-k IPU Benchmark Problems (seconds)

5.2 An IPU Evaluation using RAN-1 and RANF-1

Now that the RAN-1 and RANF-1 problem classes have been identified as the
most challenging IPU test cases, we perform two detailed studies on these prob-
lems using all three algorithmic approaches (i.e., AQC, LNS, and MIP). The first
study focuses on the scalability trends of these solution methods as the problem
size increases, whereas the second study focuses on a runtime analysis of the
largest cases that can be evaluated on our IPU hardware.

Scalability Analysis In this experiment, we increase the problem size gradually
to understand the scalability profile of each of the solution methods (AQC,
LNS, and MIP). The results are summarized in Table 4. Focusing on the smaller
problems, where the MIP solver provides an optimality proof, we observe that
both the AQC and the LNS methods find the optimal solution in all of the
sampled test cases, suggesting that both heuristic solution methods are of high
quality. Focusing on the larger problems, we observe that, in just a few seconds,
both AQC and LNS find feasible solutions that are of higher quality than what
the MIP solver can find in 600 seconds. This suggests that both methods are
producing high-quality solutions at this scale. As the problem size grows, a slight
quality discrepancy emerges favoring LNS over AQC; however, this discrepancy
in average solution quality is less than 1% of the best known value.

Detailed Runtime Analysis Given that both the AQC and the LNS solution
methods have very similar solution qualities, it is prudent to perform a detailed
runtime study to understand the quality vs runtime tradeoff. To develop a run-
time profile of the LNS algorithm, the solver’s runtime limit is set to values
ranging from 0.01 to 10.00 seconds. In the case of the AQC algorithm, the num-
ber of requested samples is set to values ranging from 10 to 10,000, which has
the effect of scaling the runtime of the IPU process.4 The results of this study

4 It is important to emphasize that the IPU runtime does not include any communi-
cation or scheduling overheads.

14 Carleton Coffrin, Harsha Nagarajan, and Russell Bent

AQC LNS MIP

Cases µ(|N |) µ(|E|) µ(UB) µ(T) µ(UB) µ(T) µ(UB) µ(LB) µ(T)

RAN-1 Problems of Increasing Size

250 30 70 -44 3.53 -44 10 -44 -44 0.05

250 69 176 -110 3.57 -110 10 -110 -110 0.48

250 122 321 -199 3.60 -199 10 -199 -199 15.90

250 194 528 -325 3.64 -325 10 -325 -327 340.00

250 275 751 -462 3.68 -462 10 -461 -483 TO

250 375 1030 -633 3.73 -633 10 -629 -673 TO

250 486 1337 -821 3.77 -822 10 -814 -881 TO

250 613 1689 -1038 3.77 -1039 10 -1021 -1116 TO

250 761 2114 -1296 3.76 -1297 10 -1262 -1401 TO

250 923 2578 -1574 3.77 -1576 10 -1525 -1713 TO

250 1095 3061 -1870 3.80 -1873 10 -1806 -2045 TO

RANF-1 Problems of Increasing Size

250 30 70 -53 3.53 -53 10 -53 -53 0.02

250 69 176 -127 3.56 -127 10 -127 -127 0.13

250 122 321 -229 3.61 -229 10 -229 -229 0.67

250 194 528 -370 3.66 -370 10 -370 -370 14.10

250 275 751 -526 3.71 -526 10 -526 -527 128.00

250 375 1030 -719 3.76 -719 10 -719 -727 471.00

250 486 1337 -934 3.81 -934 10 -933 -954 588.00

250 613 1689 -1179 3.82 -1179 10 -1178 -1211 TO

250 761 2114 -1472 3.82 -1472 10 -1470 -1520 TO

250 923 2578 -1786 3.82 -1787 10 -1778 -1856 TO

250 1095 3061 -2121 3.86 -2122 10 -2110 -2212 TO

Table 4. A Comparison of Solution Quality and Runtime as Problem Size Increases
on RAN-1 and RANF-1.

are summarized in Figure 2. Note that the stochastic sampling nature of the
IPU results in some noise for small numbers of samples. However, the overall
trend is still clear.

The results presented in Figure 2 further illustrate that (1) the RAN prob-
lem class is more challenging than the RANF problem class, and (2) regardless
of the runtime configuration used, the LNS heuristic slightly outperforms the
AQC; however, the average solution quality is always within 1% of each other.
Combining all of the results from this section suggests that the D-Wave 2X IPU
is comparable to state-of-the-art optimization methods on commodity classical
computing hardware.

6 Conclusion

In this work we have introduced the idea of an IPU as a computational ab-
straction for emerging physical devices that optimize Ising models. We have
demonstrated a number of unexpected challenges in benchmarking such devices
and have proposed bqpjson , dwig , and bqpsolvers to help address these

Ising Processing Units: Potential and Challenges for Discrete Optimization 15

−
18

75
−

18
70

−
18

65
−

18
60

RAN−1 Runtime Trend

Runtime (seconds, log)

A
ve

ra
ge

 O
bj

ec
tiv

e
V

al
ue

 (
n

=
 2

00
)

1e−02 1e−01 1e+00 1e+01

AQC
LNS

−
21

21
−

21
19

−
21

17

RANF−1 Runtime Trend

Runtime (seconds, log)

A
ve

ra
ge

 O
bj

ec
tiv

e
V

al
ue

 (
n

=
 2

00
)

1e−02 1e−01 1e+00 1e+01

AQC
LNS

Fig. 2. Detailed Runtime Analysis of the AQC (D-Wave 2X) and LNS Heuristic (HFS)
on the RAN-1 (left) and RANF-1 (right) Problem Classes.

challenges. We hope that these tools will assist the research community in de-
veloping novel algorithms that leverage IPUs.

The baseline study of the D-Wave 2X IPU suggests that averaging over collec-
tions of randomly generated test cases is a reasonable strategy for benchmarking
IPUs. However, finding a class of challenging randomly generated test cases is
not trivial. The study verified that at least one commercially available IPU is
comparable to current state-of-the-art classical methods. However, a detailed
runtime analysis did not demonstrate any time vs quality configuration where
the IPU outperformed a state-of-the-art classical method. That said, the IPU
hardware seems to be largely invariant in quality and runtime across a wide
variety of problem classes and instance sizes. If this trend continues as the IPU’s
hardware increases in size, one would expect the IPU to overtake the current
state-of-the-art classical methods because of its parallel computational nature.

Overall, we conclude that the emergence of IPUs is an interesting develop-
ment for the optimization community and warrants continued study. Consider-
able work remains to determine the best classes of test cases for benchmarking
IPUs and to develop a better understanding of how to fairly compare this het-
erogeneous hardware to established classical computing methods.

Acknowledgments

We gratefully acknowledge Denny Dahl for his feedback on the tools proposed
herein and the U.S. Department of Energy for supporting this work through Los
Alamos National Laboratory’s LDRD Program.

16 Carleton Coffrin, Harsha Nagarajan, and Russell Bent

References

1. Aaronson, S.: D-wave: Truth finally starts to emerge. Published online at http:

//www.scottaaronson.com/blog/?p=1400 (May 2013), accessed: 04/28/2017

2. Aaronson, S.: Insert d-wave post here. Published online at http://www.

scottaaronson.com/blog/?p=3192 (Mar 2017), accessed: 04/28/2017

3. Balyo, T., Heule, M.J.H., Jarvisalo, M.: Sat competition 2016: Recent develop-
ments. In: Proceedings of the Thirty-First National Conference on Artificial Intel-
ligence. pp. 5061–5063. AAAI’17, AAAI Press (2017)

4. Benedetti, M., Realpe-Gómez, J., Biswas, R., Perdomo-Ortiz, A.: Estimation of
effective temperatures in quantum annealers for sampling applications: A case
study with possible applications in deep learning. Phys. Rev. A 94, 022308 (Aug
2016), https://link.aps.org/doi/10.1103/PhysRevA.94.022308

5. Bian, Z., Chudak, F., Israel, R., Lackey, B., Macready, W.G., Roy, A.: Discrete
optimization using quantum annealing on sparse ising models. Frontiers in Physics
2, 56 (2014), http://journal.frontiersin.org/article/10.3389/fphy.2014.

00056

6. Bian, Z., Chudak, F., Israel, R.B., Lackey, B., Macready, W.G., Roy, A.: Map-
ping constrained optimization problems to quantum annealing with application
to fault diagnosis. Frontiers in ICT 3, 14 (2016), http://journal.frontiersin.
org/article/10.3389/fict.2016.00014

7. Bian, Z., Chudak, F., Macready, W.G., Rose, G.: The ising model: teaching an
old problem new tricks. Published online at https://www.dwavesys.com/sites/

default/files/weightedmaxsat_v2.pdf (2010), accessed: 04/28/2017

8. Billionnet, A., Elloumi, S.: Using a mixed integer quadratic programming solver
for the unconstrained quadratic 0-1 problem. Mathematical Programming 109(1),
55–68 (2007), http://dx.doi.org/10.1007/s10107-005-0637-9

9. Boixo, S., Ronnow, T.F., Isakov, S.V., Wang, Z., Wecker, D., Lidar, D.A., Marti-
nis, J.M., Troyer, M.: Evidence for quantum annealing with more than one hun-
dred qubits. Nat Phys 10(3), 218–224 (Mar 2014), http://dx.doi.org/10.1038/
nphys2900, article

10. Booth, M.: qbsolv. https://github.com/dwavesystems/qbsolv (2017)

11. Boothby, T., King, A.D., Roy, A.: Fast clique minor generation in chimera qubit
connectivity graphs. Quantum Information Processing 15(1), 495–508 (Jan 2016),
http://dx.doi.org/10.1007/s11128-015-1150-6

12. Brush, S.G.: History of the lenz-ising model. Rev. Modern Phys. 39, 883–893 (Oct
1967), https://link.aps.org/doi/10.1103/RevModPhys.39.883

13. Cai, J., Macready, W.G., Roy, A.: A practical heuristic for finding graph minors
(2014), https://arxiv.org/abs/1406.2741

14. Coffrin, C., Nagarajan, H., Bent, R.: Challenges and Successes of Solving Binary
Quadratic Programming Benchmarks on the DW2X QPU. Tech. rep., Los Alamos
National Laboratory (LANL) (2016)

15. D-Wave Systems Inc.: The d-wave 2x quantum computer technology overview.
Published online at https://www.dwavesys.com/sites/default/files/D-Wave%

202X%20Tech%20Collateral_0915F.pdf (2015), accessed: 04/28/2017

16. D-Wave Systems Inc.: Customers. Published online at https://www.dwavesys.

com/our-company/customers (2017), accessed: 04/28/2017

17. Dash, S.: A note on qubo instances defined on chimera graphs. arXiv preprint
arXiv:1306.1202 (2013), https://arxiv.org/abs/1306.1202

http://www.scottaaronson.com/blog/?p=1400
http://www.scottaaronson.com/blog/?p=1400
http://www.scottaaronson.com/blog/?p=3192
http://www.scottaaronson.com/blog/?p=3192
https://link.aps.org/doi/10.1103/PhysRevA.94.022308
http://journal.frontiersin.org/article/10.3389/fphy.2014.00056
http://journal.frontiersin.org/article/10.3389/fphy.2014.00056
http://journal.frontiersin.org/article/10.3389/fict.2016.00014
http://journal.frontiersin.org/article/10.3389/fict.2016.00014
https://www.dwavesys.com/sites/default/files/weightedmaxsat_v2.pdf
https://www.dwavesys.com/sites/default/files/weightedmaxsat_v2.pdf
http://dx.doi.org/10.1007/s10107-005-0637-9
http://dx.doi.org/10.1038/nphys2900
http://dx.doi.org/10.1038/nphys2900
https://github.com/dwavesystems/qbsolv
http://dx.doi.org/10.1007/s11128-015-1150-6
https://link.aps.org/doi/10.1103/RevModPhys.39.883
https://arxiv.org/abs/1406.2741
https://www.dwavesys.com/sites/default/files/D-Wave%202X%20Tech%20Collateral_0915F.pdf
https://www.dwavesys.com/sites/default/files/D-Wave%202X%20Tech%20Collateral_0915F.pdf
https://www.dwavesys.com/our-company/customers
https://www.dwavesys.com/our-company/customers
https://arxiv.org/abs/1306.1202

Ising Processing Units: Potential and Challenges for Discrete Optimization 17

18. Denchev, V.S., Boixo, S., Isakov, S.V., Ding, N., Babbush, R., Smelyanskiy, V.,
Martinis, J., Neven, H.: What is the computational value of finite-range tunnel-
ing? Phys. Rev. X 6, 031015 (Aug 2016), https://link.aps.org/doi/10.1103/
PhysRevX.6.031015

19. Feynman, R.P.: Simulating physics with computers. International Journal of The-
oretical Physics 21(6), 467–488 (1982)

20. Gent, I.P., Walsh, T.: CSPlib: A Benchmark Library for Constraints, pp. 480–
481. Springer Berlin Heidelberg, Berlin, Heidelberg (1999), http://dx.doi.org/
10.1007/978-3-540-48085-3_36

21. de Givry, S., Larrosa, J., Meseguer, P., Schiex, T.: Solving Max-SAT as Weighted
CSP, pp. 363–376. Springer Berlin Heidelberg, Berlin, Heidelberg (2003), http:

//dx.doi.org/10.1007/978-3-540-45193-8_25

22. Gurobi Optimization, Inc.: Gurobi optimizer reference manual. Published online
at http://www.gurobi.com (2014)

23. Hamze, F., de Freitas, N.: From fields to trees. In: Proceedings of the 20th Confer-
ence on Uncertainty in Artificial Intelligence. pp. 243–250. UAI ’04, AUAI Press,
Arlington, Virginia, United States (2004), http://dl.acm.org/citation.cfm?id=
1036843.1036873

24. Haribara, Y., Utsunomiya, S., Yamamoto, Y.: A Coherent Ising Machine for MAX-
CUT Problems: Performance Evaluation against Semidefinite Programming and
Simulated Annealing, pp. 251–262. Springer Japan, Tokyo (2016), http://dx.doi.
org/10.1007/978-4-431-55756-2_12

25. Hen, I., Job, J., Albash, T., Rønnow, T.F., Troyer, M., Lidar, D.A.: Probing for
quantum speedup in spin-glass problems with planted solutions. Phys. Rev. A 92,
042325 (Oct 2015), https://link.aps.org/doi/10.1103/PhysRevA.92.042325

26. Hoos, H.H., Stutzle, T.: Satlib: An online resource for research on sat (2000)

27. Inagaki, T., Haribara, Y., Igarashi, K., Sonobe, T., Tamate, S., Honjo, T., Marandi,
A., McMahon, P.L., Umeki, T., Enbutsu, K., Tadanaga, O., Takenouchi, H., Ai-
hara, K., Kawarabayashi, K.i., Inoue, K., Utsunomiya, S., Takesue, H.: A coherent
ising machine for 2000-node optimization problems. Science 354(6312), 603–606
(2016), http://science.sciencemag.org/content/354/6312/603

28. International Business Machines Corporation: Ibm building first universal quantum
computers for business and science. Published online at https://www-03.ibm.com/
press/us/en/pressrelease/51740.wss (2017), accessed: 04/28/2017

29. Johnson, M.W., Amin, M.H.S., Gildert, S., Lanting, T., Hamze, F., Dickson, N.,
Harris, R., Berkley, A.J., Johansson, J., Bunyk, P., Chapple, E.M., Enderud, C.,
Hilton, J.P., Karimi, K., Ladizinsky, E., Ladizinsky, N., Oh, T., Perminov, I., Rich,
C., Thom, M.C., Tolkacheva, E., Truncik, C.J.S., Uchaikin, S., Wang, J., Wilson,
B., Rose, G.: Quantum annealing with manufactured spins. Nature 473(7346),
194–198 (May 2011), http://dx.doi.org/10.1038/nature10012

30. Kielpinski, D., Bose, R., Pelc, J., Vaerenbergh, T.V., Mendoza, G., Tezak, N.,
Beausoleil, R.G.: Information processing with large-scale optical integrated cir-
cuits. In: 2016 IEEE International Conference on Rebooting Computing (ICRC).
pp. 1–4 (Oct 2016)

31. King, A.D., Lanting, T., Harris, R.: Performance of a quantum annealer on range-
limited constraint satisfaction problems. arXiv preprint arXiv:1502.02098 (2015)

32. King, J., Yarkoni, S., Nevisi, M.M., Hilton, J.P., McGeoch, C.C.: Benchmark-
ing a quantum annealing processor with the time-to-target metric. arXiv preprint
arXiv:1508.05087 (2015)

https://link.aps.org/doi/10.1103/PhysRevX.6.031015
https://link.aps.org/doi/10.1103/PhysRevX.6.031015
http://dx.doi.org/10.1007/978-3-540-48085-3_36
http://dx.doi.org/10.1007/978-3-540-48085-3_36
http://dx.doi.org/10.1007/978-3-540-45193-8_25
http://dx.doi.org/10.1007/978-3-540-45193-8_25
http://www.gurobi.com
http://dl.acm.org/citation.cfm?id=1036843.1036873
http://dl.acm.org/citation.cfm?id=1036843.1036873
http://dx.doi.org/10.1007/978-4-431-55756-2_12
http://dx.doi.org/10.1007/978-4-431-55756-2_12
https://link.aps.org/doi/10.1103/PhysRevA.92.042325
http://science.sciencemag.org/content/354/6312/603
https://www-03.ibm.com/press/us/en/pressrelease/51740.wss
https://www-03.ibm.com/press/us/en/pressrelease/51740.wss
http://dx.doi.org/10.1038/nature10012

18 Carleton Coffrin, Harsha Nagarajan, and Russell Bent

33. King, J., Yarkoni, S., Raymond, J., Ozfidan, I., King, A.D., Nevisi, M.M., Hilton,
J.P., McGeoch, C.C.: Quantum annealing amid local ruggedness and global frus-
tration (2017), https://arxiv.org/abs/1701.04579

34. Klymko, C., Sullivan, B.D., Humble, T.S.: Adiabatic quantum programming: mi-
nor embedding with hard faults. Quantum Information Processing 13(3), 709–729
(2014), http://dx.doi.org/10.1007/s11128-013-0683-9

35. Koch, T., Achterberg, T., Andersen, E., Bastert, O., Berthold, T., Bixby, R.,
Danna, E., Gamrath, G., Gleixner, A., Heinz, S., Lodi, A., Mittelmann, H., Ralphs,
T., Salvagnin, D., Steffy, D., Wolter, K.: Miplib 2010: Mixed integer programming
library version 5. Mathematical Programming Computation 3(2), 103–163 (2011)

36. Lokhov, A.Y., Vuffray, M., Misra, S., Chertkov, M.: Optimal structure and param-
eter learning of ising models (2016), https://arxiv.org/abs/1612.05024

37. Lucas, A.: Ising formulations of many np problems. Frontiers in Physics 2, 5
(2014), http://journal.frontiersin.org/article/10.3389/fphy.2014.00005

38. Mandrà, S., Zhu, Z., Wang, W., Perdomo-Ortiz, A., Katzgraber, H.G.: Strengths
and weaknesses of weak-strong cluster problems: A detailed overview of state-of-
the-art classical heuristics versus quantum approaches. Phys. Rev. A 94, 022337
(Aug 2016), https://link.aps.org/doi/10.1103/PhysRevA.94.022337

39. Mandr, S., Katzgraber, H.G., Thomas, C.: The pitfalls of planar spin-glass bench-
marks: Raising the bar for quantum annealers (again) (2017), https://arxiv.org/
abs/1703.00622

40. McMahon, P.L., Marandi, A., Haribara, Y., Hamerly, R., Langrock, C., Tamate, S.,
Inagaki, T., Takesue, H., Utsunomiya, S., Aihara, K., et al.: A fully-programmable
100-spin coherent ising machine with all-to-all connections. Science p. aah5178
(2016)

41. Mitchell, D., Selman, B., Levesque, H.: Hard and easy distributions of sat problems.
In: Proceedings of the Tenth National Conference on Artificial Intelligence. pp.
459–465. AAAI’92, AAAI Press (1992), http://dl.acm.org/citation.cfm?id=

1867135.1867206

42. Modha, D.S.: Introducing a brain-inspired computer. Published online at
http://www.research.ibm.com/articles/brain-chip.shtml (2017), accessed:
04/28/2017

43. Mohseni, M., Read, P., Neven, H., Boixo, S., Denchev, V., Babbush, R.,
Fowler, A., Smelyanskiy, V., Martinis, J.: Commercialize quantum technolo-
gies in five years. Nature 543, 171174 (2017), http://www.nature.com/news/

commercialize-quantum-technologies-in-five-years-1.21583

44. Morgado, A., Heras, F., Liffiton, M., Planes, J., Marques-Silva, J.: Iterative and
core-guided maxsat solving: A survey and assessment. Constraints 18(4), 478–534
(2013), http://dx.doi.org/10.1007/s10601-013-9146-2

45. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.:
MiniZinc: Towards a Standard CP Modelling Language, pp. 529–543. Springer
Berlin Heidelberg, Berlin, Heidelberg (2007), http://dx.doi.org/10.1007/

978-3-540-74970-7_38

46. Nieuwenhuis, R.: The IntSat Method for Integer Linear Programming, pp. 574–589.
Springer International Publishing, Cham (2014), http://dx.doi.org/10.1007/

978-3-319-10428-7_42

47. Rieffel, E.G., Venturelli, D., O’Gorman, B., Do, M.B., Prystay, E.M., Smelyan-
skiy, V.N.: A case study in programming a quantum annealer for hard opera-
tional planning problems. Quantum Information Processing 14(1), 1–36 (2015),
http://dx.doi.org/10.1007/s11128-014-0892-x

https://arxiv.org/abs/1701.04579
http://dx.doi.org/10.1007/s11128-013-0683-9
https://arxiv.org/abs/1612.05024
http://journal.frontiersin.org/article/10.3389/fphy.2014.00005
https://link.aps.org/doi/10.1103/PhysRevA.94.022337
https://arxiv.org/abs/1703.00622
https://arxiv.org/abs/1703.00622
http://dl.acm.org/citation.cfm?id=1867135.1867206
http://dl.acm.org/citation.cfm?id=1867135.1867206
http://www.research.ibm.com/articles/brain-chip.shtml
http://www.nature.com/news/commercialize-quantum-technologies-in-five-years-1.21583
http://www.nature.com/news/commercialize-quantum-technologies-in-five-years-1.21583
http://dx.doi.org/10.1007/s10601-013-9146-2
http://dx.doi.org/10.1007/978-3-540-74970-7_38
http://dx.doi.org/10.1007/978-3-540-74970-7_38
http://dx.doi.org/10.1007/978-3-319-10428-7_42
http://dx.doi.org/10.1007/978-3-319-10428-7_42
http://dx.doi.org/10.1007/s11128-014-0892-x

Ising Processing Units: Potential and Challenges for Discrete Optimization 19

48. Selby, A.: Qubo-chimera. https://github.com/alex1770/QUBO-Chimera (2013)
49. Selby, A.: Efficient subgraph-based sampling of ising-type models with frustration

(2014), https://arxiv.org/abs/1409.3934
50. Venturelli, D., Marchand, D.J.J., Rojo, G.: Quantum annealing implementation of

job-shop scheduling (2015), https://arxiv.org/abs/1506.08479
51. Vuffray, M., Misra, S., Lokhov, A., Chertkov, M.: Interaction screening: Efficient

and sample-optimal learning of ising models. In: Lee, D.D., Sugiyama, M., Luxburg,
U.V., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing
Systems 29, pp. 2595–2603. Curran Associates, Inc. (2016)

52. Yamaoka, M., Yoshimura, C., Hayashi, M., Okuyama, T., Aoki, H., Mizuno, H.:
24.3 20k-spin ising chip for combinational optimization problem with cmos anneal-
ing. In: 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest
of Technical Papers. pp. 1–3 (Feb 2015)

53. Yoshimura, C., Yamaoka, M., Aoki, H., Mizuno, H.: Spatial computing architecture
using randomness of memory cell stability under voltage control. In: 2013 European
Conference on Circuit Theory and Design (ECCTD). pp. 1–4 (Sept 2013)

54. Zdeborova, L., Krzakala, F.: Statistical physics of inference: thresholds and algo-
rithms. Advances in Physics 65(5), 453–552 (2016), http://dx.doi.org/10.1080/
00018732.2016.1211393

LA-UR-17-23494

https://github.com/alex1770/QUBO-Chimera
https://arxiv.org/abs/1409.3934
https://arxiv.org/abs/1506.08479
http://dx.doi.org/10.1080/00018732.2016.1211393
http://dx.doi.org/10.1080/00018732.2016.1211393

	Ising Processing Units: Potential and Challenges for Discrete Optimization
	Introduction
	A Brief Introduction to Ising Models
	Features of Ising Processing Units
	Challenges of Benchmarking Ising Processing Units

	Tools for Benchmarking Ising Processing Units
	Data Management
	Case Generation
	Baseline Solution Methods

	A Study of Established Methods
	Identifying Challenging Cases
	An IPU Evaluation using RAN-1 and RANF-1

	Conclusion

